
Isoscaling bearing information on the nuclear caloric curve

S. R. Souza and R. Donangelo
Instituto de Fisica, Universidade Federal do Rio de Janeiro, Cidade Universitária, CP 68528, 21941-972 Rio de Janeiro, Brazil

W. G. Lynch, W. P. Tan,* and M. B. Tsang
Department of Physics and Astronomy and National Superconducting Cyclotron Laboratory, Michigan State University,

East Lansing, Michigan 48824, USA
(Received 9 June 2003; published 30 March 2004)

We show that the qualitative behavior of the nuclear caloric curve can be inferred from the energy depen-
dence of the isoscaling parameters. Since there are strong indications that the latter are not distorted by the
secondary decay of primary hot fragments, in contrast to other observables, this suggests that valuable infor-
mation on the nuclear caloric curve may be obtained through the analysis presented in this work.
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The determination of the nuclear caloric curve is key to
the understanding of the multifragment emission observed in
heavy-ion collisions at intermediate energies[1,2]. Indeed,
equilibrium statistical calculations predict a continuous rise
of the breakup temperature as a function of the excitation
energy of the disassembling system if the multifragment
emission takes place at fixed density[2–4]. In this case, the
pressure at the breakup stage increases monotonously as a
function of the excitation energy. On the other hand, a wide
plateau should be observed[4,5] if the onset of multifrag-
mentation occurs after a rapid rise of the pressure, which is
accompanied by a steady decrease of the breakup density as
the excitation energy increases[5]. Similar conclusions have
also been obtained with a soluble thermodynamic model by
Daset al. [2].

The experimental observation of the caloric curve has
been intensively debated in the last years[1,6–9] since dif-
ferent measurements have led to distinctly different conclu-
sions[6,10–16]. One problem is due to the great difficulties
in measuring the nuclear temperature as this quantity can
only be inferred from fragment information measured long
after the breakup stage. It has been shown that side feeding
from the de-excitation of the primordial hot fragments
[8,9,17–19] may bias empirical conclusions drawn from the
different methods currently employed[18,20–22] in the de-
termination of the breakup temperature.

In this context, the isotopic scaling recently observed in
nuclear reactions, in a broad range of bombarding energies
[23–28], is expected to be rather insensitive to effects asso-
ciated with the secondary decay of the primary fragments
[25,29]. More precisely, the ratioR21 between the multiplic-
ity YisN,Zd of a fragment whose proton and neutron numbers
are, respectively,Z andN, measured in two reactions(1 and
2) with different isospin, follows the relation:

R21 =
Y2sN,Zd
Y1sN,Zd

= C expsaN + bZd, s1d

where a and b are the isoscaling parameters andC is a
normalization constant. This scaling property is very robust.
As is shown in Refs.f24,27,28g, it has been observed in deep
inelastic reactions, evaporation processes, besides nuclear
multifragmentation.

One explanation for this scaling behavior may be found in
the grand-canonical ensemble, in which the multiplicity
YsN,Zd is given by:

YsN,Zd = zAZsT,Vfd expFmpZ + mnN

T
G , s2d

whereT is the breakup temperature,mn andmp, respectively,
stand for the neutron and proton chemical potentials and

zAZ = gAZ
Vf

lT
3A3/2 expFBAZ − fAZsTd

T
G . s3d

In the above expression,A is the mass number,BAZ andgAZ
are, respectively, the fragment’s binding energy and spin de-
generacy factor. The excitation energy of the fragment is
taken into account by the internal free energyfAZsTd. The
free volumeVf is a parameter of the calculation andlT

=Î2p"2/mNT, wheremN is the nucleon mass.
If the breakup takes place in the two reactions at the same

temperature and density, the ratio involvingzAZ cancels out
and one finds that

a =
mn

s2d − mn
s1d

T
and b =

mp
s2d − mp

s1d

T
, s4d

where the superscripts label reactionss1d and s2d. Although
the observed yields are affected by the decay of the primary
fragments, the form of Eq.s2d is still expected to hold, even
though zAZ will be given by a more complex expression.
SincezAZ might be very similar in the two reactions, as long
as the breakup temperatures are close enough, the isoscaling
parameters should be safely obtained from the final yields
f25,29g and, therefore, should bear reliable information on
the breakup stage.

Owing to the exponential relationship between the system
mass and the chemical potential,ms2d−ms1d should be a
slowly varying function of the temperature. This is indeed
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confirmed by our calculations(see below), in agreement with
the findings of Ref.[26]. Therefore, the robustness of the
isoscaling parameters may be used to investigate the qualita-
tive behavior of the caloric curve.

To address this point, we apply the isoscaling analysis to
the decay products of reactions in which a thermally equili-
brated source with excitation energyE* breaks up statisti-
cally. We consider a proton rich source, whose mass and
atomic numbers areA0=168 andZ0=75, which corresponds
to reaction(1). In the second reaction, we use a neutron rich
source, withA0=186 andZ0=75. The improved version[3]
of the statistical multifragmentation model(ISMM) devel-
oped in Refs.[5,30,31], and described below, is used in the
following calculations to simulate the decay of the excited
source. Either implementation of this model is useful in the
present study since, under different assumptions for the
breakup density, it predicts qualitatively different caloric
curves[4]. Thus its predictions can provide the input to in-
vestigate the sensitivity of the isoscaling parameters on the
qualitative shape of the caloric curve.

In the ISMM model, partitions strictly consistent with the
constraints

A0 = o
AZ

NAZA, Z0 = o
AZ

NAZZ, s5d

and

E0
g.s.+ E* =

3

5

Z0
2e2

R0
+ o

AZ

NAZEAZsT,Vd, s6d

are imposed. In the above equations,NAZ denotes the multi-
plicity, in each generated partition, of fragments whose mass
and atomic numbers areA and Z, E0

g.s. is the ground state
energy of the source,e represents the elementary charge,
and R0 is the radius of a sphere with a volumeV, corre-
sponding to the breakup volume. The energyEAZsT,Vd
contains contributions from the fragment’s binding en-
ergy, excitation energy, translational motion, besides the
remaining Coulomb terms which, through the Wigner-
Seitz approximation, provide the corrections to account
for the Coulomb repulsion between the fragmentsf30g. A
Monte Carlo sample of the possible fragmentation modes
is carried out following Ref.f31g. The breakup tempera-
ture is determined, for each partition, by solving Eq.s6d.

The main differences from the ISMM[3] and the original
SMM [5,30,31] are in the use of internal free energies built
from empirical data on discrete states wherever available and
of experimental binding energies all over the mass table[32].
Careful extrapolations are carried out to mass regions where
the information is not available in either case[3,29]. Both
quantities influence directly the determination ofT in each
fragmentation modef, whereas the free energies also play an
important role in the evaluation of the entropySf, which
enters in the calculation of any physical observableOAZ:

kOAZl =

o
f

OAZ expF o
hAZjf

NAZSAZG
o

f

expF o
hAZjf

NAZSAZG . s7d

Due to the constraints imposed on each partition, a physical
observableOAZ fluctuates from one fragmentation mode to
the other.

The average breakup temperature may be obtained
through the above expression and it is shown in Fig. 1 as a
function of the excitation energy for the two sources we con-
sider. In order to suppress statistical fluctuations, a billion
events have been generated for each excitation energy. A
monotonous increase of the temperature is observed in the
upper panel, in which case the breakup volume of the system
is kept constant and is six times larger than its value at nor-
mal density. One also observes that the average temperatures
are very similar for both sources, which justifies the assump-
tion that the temperature dependent terms inzAZ cancel out in
Eq. (1). As stated before, and reported in Ref.[4], the situa-
tion is qualitatively different as one allows the breakup vol-
ume to be multiplicity dependent and a plateau is observed
approximately between 3.5 and 7 MeV/A. The breakup tem-
peratures in both systems are quite close, except at the region
around the onset of multifragmentation,E* /A<3.0 MeV,
where small differences may be noted.

In contrast to an earlier study also using the SMM[33], in
which a larger isospin dependence in the plateau region was
predicted, such effect is rather reduced in our calculations.
To understand this aspect, we rewrite Eq.(6) in the following
way:

E* − FBA0Z0
− o

AZ

NAZBAZG − F3

5

Z0
2e2

R0
− o

AZ

NAZ
3

5

Z2e2

Rcell
G

=
3

2
TsM − 1d + o

A

NAEA
* sTd, s8d

FIG. 1. Caloric curve predicted by the ISMM for the neutron
(triangles) and proton(squares) rich sources. In the upper panel it is
assumed that the breakup occurs at a fixed density whereas the
breakup volume is allowed to change in the results displayed in the
bottom panel. For details see text.
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whereNA denotes the multiplicity of fragments with massA
in the fragmentation mode considered and the total fragment
multiplicity is represented byM. The quantityRcell stands
for the radius of the cell in which the fragment is embed-
ded as one subdivides the system in order to apply the
Wigner-Seitz approximationf30g.

The first term on the right-hand side of Eq.(8) corre-
sponds to the fragments’ kinetic energy(in the center of mass
reference frame of the total system) andEA

* sTd represents the
internal excitation energy of a fragment with massA at tem-
peratureT. We suppressed anyZ dependence inEA

* sTd since
it has been introduced in SMM only in Ref.[3]. It entered in
previous calculations only in the case ofA=4 nuclei because
all light fragmentssA,5d were assumed to have no internal
degrees of freedom, except for the alpha particles. Therefore,
all the dependence on isospin is confined to the left-hand
side of this equation.

An increase ofZ0/A0 enhances the Coulomb term be-
tween brackets in Eq.(8) and, as a consequence, tends to
lower the temperature, which appears only on the right-hand
side of the above expression. This is the effect observed in
Ref. [33].

Nevertheless, the binding energies play a very important
role in the balance of the equation and, consequently, on the
temperature extracted from it. It is shown in Ref.[29] that
total binding energies calculated through simple liquid drop
mass formulas, such as that used in Ref.[33], deviate appre-
ciably from empirical values. The differences reported in
Ref. [29] can be as large as 40 MeV for heavy nuclei and
are, on the average, around 10 MeV for light fragments.
Therefore,BA0Z0

−oAZ NAZBAZ calculated in Ref.[33] has
systematic errors which further increase the isospin depen-
dence of the temperature. Our results, which are obtained
with empirical binding energies and careful extrapolations to
mass regions where this information is not available, as de-
scribed in Refs.[3,29], exhibit a much weaker isospin depen-
dence.

We now investigate the extent to which the isoscaling
parameters carry information on the caloric curve and show,
in Fig. 2, 1/a as a function of the excitation energy. The
parameters are obtained by fitting Eq.(1) to the primary
yields predicted by the microcanonical ISMM calculations,
with the same isotopes,Z=1,2, . . . ,8,used in Ref.[25]. We
have checked that, in agreement with Refs.[25,29], the
changes in 1/a due to the secondary decay[3] of the primor-
dial fragments are of the order of 5 % atE* /A=3, 6, and
9 MeV and, therefore, do not change our conclusions. As in
the previous plot, the results shown in the upper panel cor-
respond to a fixed breakup density whereas it is allowed to
change in the lower part of the picture. The results reveal
distinct qualitative behaviors in each case. More specifically,
the reciprocal ofa follows approximately a straight line for
almost the full range of excitation energies considered if the
breakup density is kept fixed. A clear change of slope, before
and after the plateau region, appears if the breakup volume is
multiplicity dependent. The plateau observed in the caloric
curve is not so apparent in the 1/a plot because, although
ms2d−ms1d varies slowly compared toT, it somewhat distorts
the curve. The relevant point here is that one should observe

different qualitative behaviors in the 1/a plot according to
the characteristics of the caloric curve. Similar conclusions
are obtained with theb parameter, but we concentrate ona
because, as shown in Refs.[25,29], b might change more
thana after secondary decay of the primary fragments, prob-
ably due to Coulomb effects. The distinction between the
two scenarios allows one to ascertain the existence of the
plateau in the caloric curve. It is worth mentioning that the
experimental results presented in Ref.[26] seem to favor the
monotonous increase of the breakup temperature. However,
since in this reference 1/a is plotted as a function of the
bombarding energy, further analysis is needed to draw more
precise conclusions.

In order to investigate the dependence of the results on the
statistical ensemble employed, we also calculate the primary
yields, for the two sources considered here, in the framework
of the grand-canonical approach. To prevent artificial devia-
tions, we use the same ingredients of the microcanonical
case, such as binding energies, internal free energies, and
spin degeneracy factors. The free volume and the breakup
temperature, which enter into Eqs.(2) and (3), are obtained
from the microcanonical calculation for each excitation en-
ergy, instead of considering them as free parameters as is
usually assumed. Given these two quantities, the chemical
potentials are calculated by imposing that:

A0 = o
NZ

YsN,ZdA and Z0 = o
NZ

YsN,ZdZ, s9d

where YsN,Zd is computed through Eqs.s2d and s3d. The
chemical potentials are found by minimizing the difference
between the left- and the right-hand sides of the above equa-
tions. We impose that the constraints are fulfilled with a
precision better than three digits. Once the chemical poten-
tials are obtained, the primary yieldsYsN,Zd may be evalu-
ated through Eqs.s2d and s3d.

The predictions of the two ensembles are compared in

FIG. 2. Reciprocal of the isoscaling parametera as a function of
the excitation energy. Constant breakup volume is assumed in the
upper panel, while in the lower one the results were obtained with
variable breakup volume. The lines illustrate the slopes in each
region. For details see text.
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Fig. 3, where the results of the grand-canonical calculations
are depicted by the open squares whereas the full circles
represent those obtained with the microcanonical ensemble.
The isoscaling parameters are obtained by fitting Eq.(1) us-
ing the grand-canonical yields, as is done in the microca-
nonical calculation. It may be noted that, although the abso-
lute values differ from one statistical approach to the other,
both exhibit the same qualitative behavior. We have checked
that a andb obtained through Eq.(4) agree fairly well with
the grand-canonical values displayed in this picture. Small
deviations are observed only in the regions in which the
difference between the breakup temperatures of the sources
are non-negligible. Besides showing the consistency of the
isoscaling assumptions, this confirms the expectation that

small differences between the average temperatures of the
two sources should not appreciably affect the scaling prop-
erties.

The difference between the predictions of the two statis-
tical approaches may be attributed to the strong mass,
charge, and energy constraints imposed in the microcanoni-
cal calculations in each partition. These restrictions lead to a
fairly broad temperature distribution[34], corresponding to
different fragmentation modes. In contrast, the temperature is
kept constant in the grand-canonical ensemble whereas the
charge, mass, and energy are fixed only on the average and
not event by event. However, the qualitative agreement be-
tween the two calculations is a very positive aspect since it is
extremely difficult to select events whose decaying sources
strictly obey these constraints in experiments. Therefore our
analysis seem to indicate that, at least, the qualitative behav-
ior of the caloric curve may be studied experimentally.

In conclusion, we suggest that the existence of the plateau
in the nuclear caloric curve may be better investigated ex-
perimentally through the isoscaling analysis. Clear devia-
tions from the linear behavior are expected to be found in the
1/a vs E* /A curve if the plateau exists. Conversely, if this
plateau does not exist, the 1/a vs E* /A curve should follow
a straight line over a wide excitation energy domain. Our
results indicate that the determination of the qualitative
shape of the caloric curve can be done more reliably using
the isoscaling analysis than through measurements of the
temperature from the multiplicities of the detected frag-
ments.

We would like to acknowledge CNPq and FUJB for par-
tial financial support. This work was supported in part by the
National Science Foundation under Grant Nos. PHY-01-
10253 and INT-9908727 and by the CNPq-NSF agreement.

[1] X. Campi, H. Krivine, and E. Plagnol, Phys. Lett. B385, 1
(1996).

[2] C. B. Das, S. Das Gupta, and A. Z. Mekjian, Phys. Rev. C68,
014607(2003).

[3] W. P. Tan, S. R. Souza, R. J. Charity, R. Donangelo, C. K.
Gelbke, W. G. Lynch, and M. B. Tsang, Phys. Rev. C68,
034609(2003).

[4] J. P. Bondorf, A. S. Botvina, and I. N. Mishustin, Phys. Rev. C
58, R27 (1998).

[5] J. P. Bondorf, R. Donangelo, I. N. Mishustin, and H. Schulz,
Nucl. Phys.A444, 460 (1985).

[6] J. Natowitz, R. Wada, K. Hagel, T. Keutgen, M. Murray, A.
Makeev, L. Qin, P. Smith, and C. Hamilton, Phys. Rev. C65,
034618(2002).

[7] L. Moretto, R. Ghetti, L. Phair, K. Tso, and J. Wozniak, Phys.
Rev. Lett. 76, 2822(1996).

[8] J. Péter, Nuovo Cimento Soc. Ital. Fis., A111A, 977 (1998).
[9] S. D. Gupta, A. Z. Mekjian, and M. B. Tsang, Adv. Nucl. Phys.

26, 91 (2001).
[10] A. Ruangmaet al., Phys. Rev. C66, 044603(2002).

[11] K. Kwiatkowski, A. S. Botvina, D. S. Bracken, E. R. Foxford,
W. A. Friedman, R. G. Korteling, K. B. Morley, E. Pollacco,
V. E. Viola, and C. Volant, Phys. Lett. B423, 21 (1998).

[12] J. Pochodzallaet al., Phys. Rev. Lett.75, 1040(1994).
[13] J. A. Haugeret al., Phys. Rev. Lett.77, 235 (1996).
[14] Y. Ma et al., Phys. Lett. B390, 41 (1997).
[15] V. Serflinget al., Phys. Rev. Lett.80, 3928(1998).
[16] H. F. Xi et al., Phys. Rev. C58, R2636(1998).
[17] H. Xi, W. G. Lynch, M. B. Tsang, W. A. Friedmann, and D.

Durand, Phys. Rev. C59, 1567(1999).
[18] A. Siwek, D. Durand, F. Gulminelli, and J. Péter, Phys. Rev. C

57, 2507(1998).
[19] A. Kolomiets, E. Ramakrishnan, H. Johnston, F. Gimeno-

Nogues, B. H. D. O’Kelly, D. J. Rowland, S. Shlomo, T.
White, J. Winger, and S. J. Yennello, Phys. Rev. C54, R472
(1996).

[20] D. J. Morrissey, W. Benenson, E. Kashy, B. Sherrill, A. D.
Panagiotou, R. A. Blue, R. M. Ronningen, J. van der Plicht,
and H. Utsunomiya, Phys. Lett.148B, 423 (1984).

[21] S. Albergo, S. Costa, E. Constanzo, and A. Rubbino, Nuovo

FIG. 3. Same as Fig. 2. The circles represent the predictions of
the microcanonical approach, whereas the results obtained with the
grand-canonical ensemble are depicted by the squares. For details
see text.

SOUZA, DONANGELO, LYNCH, TAN, AND TSANG PHYSICAL REVIEW C69, 031607(R) (2004)

RAPID COMMUNICATIONS

031607-4



Cimento Soc. Ital. Fis., A89A, 1 (1985).
[22] M. Veselsky, R. W. Ibbotson, R. Laforest, E. Ramakrishman,

D. J. Rowland, A. Ruangma, E. Winchester, E. Martin, and S.
J. Yennello, Phys. Lett. B497, 1 (2001).

[23] H. S. Xu et al., Phys. Rev. Lett.85, 716 (2000).
[24] M. B. Tsang, W. A. Friedman, C. K. Gelbke, W. G. Lynch, G.

Verde, and H. S. Xu, Phys. Rev. Lett.86, 5023(2001).
[25] M. B. Tsanget al., Phys. Rev. C64, 054615(2001).
[26] A. S. Botvina, O. V. Lozhkin, and W. Trautmann, Phys. Rev. C

65, 044610(2002).
[27] D. V. Shetty, S. J. Yennello, E. Martin, A. Keksis, and G. A.

Souliotis, Phys. Rev. C68, 021602(2003).
[28] G. A. Souliotis, D. V. Shetty, M. Veselsky, G. Chubarian, L.

Trache, A. Keksis, E. Martin, and S. J. Yennello, Phys. Rev. C
68, 024605(2003).

[29] S. R. Souza, P. Danielewicz, S. Das Gupta, R. Donangelo, W.
A. Friedman, W. G. Lynch, W. P. Tan, and M. B. Tsang, Phys.
Rev. C 67, 051602(2003).

[30] J. P. Bondorf, R. Donangelo, I. N. Mishustin, C. J. Pethick, H.
Schulz, and K. Sneppen, Nucl. Phys.A443, 321 (1985b).

[31] K. Sneppen, Nucl. Phys.A470, 213 (1987).
[32] G. Audi and A. Wapstra, Nucl. Phys.A595, 409 (1995).
[33] R. Ogul and A. S. Botvina, Phys. Rev. C66, 051601(2002).
[34] S. R. Souza, W. Tan, R. Donangelo, C. K. Gelbke, W. G.

Lynch, and M. B. Tsang, Phys. Rev. C62, 064607(2000).

ISOSCALING BEARING INFORMATION ON THE… PHYSICAL REVIEW C 69, 031607(R) (2004)

RAPID COMMUNICATIONS

031607-5


